Unique properties of a renal sulfotransferase, St1d1, in dopamine metabolism.
نویسندگان
چکیده
Although catecholamine sulfation is higher in the kidney than in the liver of mice, no detectable amounts of previously reported sulfotransferases (STs) such as St1a, St1b, St1c, and St1e were expressed in mouse kidney cytosols. A new sulfotransferase (St1d1) cDNA was isolated from kidney cDNA library of BALB/c strain by reverse transcription-polymerase chain reaction (RTPCR) using information from expressed sequence tags (EST) database. The cDNA sequence resembled that of cDNA reported previously (AA238910) (Sakakibara et al., 1998) but differed in two amino acids, (206)Q/K and (216)Y/F, in the deduced amino acid sequence. The St1d1 expressed had unique substrate specificities for catecholamine derivatives, which preferred their deaminated metabolites rather than their parent amines. St1d1 showed the highest activity toward 3,4-dihydroxyphenylacetic acid (230.2 +/- 2.69 nmol/mg/min) among the examined substrate. St1d1 protein was abundant in kidney, followed by liver, lung, and uterus. Furthermore, an addition of anti-St1d1 serum in the cytosolic reaction mixture resulted in complete inhibition of the sulfotransferase activity suggesting a major role of St1d1 on catecholamine sulfations. No human ST1D ortholog was detected at both mRNA and protein levels, although ST1A5 selectively catalyzing parent amine sulfation was detected in human kidney. These results indicate the functional basis of sulfation and the clear species difference on renal catecholamine metabolisms in mice and humans.
منابع مشابه
A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols.
A thermostable phenol sulfotransferase, SULT1A1, has been implicated in numerous detoxification and bioactivation pathways; however, little is known regarding its endogenous function or its putative role in mediating risk for human environmental disease. A simple endpoint colorimetric assay is described that can be used for rapid phenotyping of SULT1A1 activity in human populations. The assay u...
متن کاملA single amino acid, glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3.
Sulfation, catalyzed by members of the sulfotransferase (SULT) superfamily, exerts considerable influence over the biological activity of numerous endogenous and xenobiotic chemicals. In humans, catecholamines such as dopamine are extensively sulfated, and a SULT isoform (SULT1A3 or the monoamine-sulfating form of phenolsulfotransferase) has evolved with considerable selectivity for dopamine an...
متن کاملX-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity.
Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal s...
متن کاملGlucocorticoids stimulate hepatic and renal catecholamine inactivation by direct rapid induction of the dopamine sulfotransferase Sult1d1.
During the stress response and metabolic fasting, glucocorticoids acting via the glucocorticoid receptor (GR) stimulate hepatic glucose production by activating specific gluconeogenic enzyme target genes. To characterize novel direct GR-regulated hepatic target genes under glucocorticoid control, we performed a whole genome gene expression microarray using dexamethasone-treated GR-null mice. St...
متن کاملSolvent effect on cDNA-expressed human sulfotransferase (SULT) activities in vitro.
Sulfation is an important reaction in the biotransformation of steroid hormones, neurotransmitters, drugs, and other xenobiotics, yet little is known about the effects of organic solvents on sulfotransferase (SULT) activities in vitro. Initial experiments found that surprisingly low levels of solvent had dramatic effects on sulfotransferase activity. Consequently, we evaluated the effects of fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 310 2 شماره
صفحات -
تاریخ انتشار 2004